DAY 1

The first day of the workshop dealt with “ The Theory Of Everything”. 4 major topics were
discussed.

1. Physics

The principle of the Self Balancing Bot, i.e. Inverted Pendulum. The Vertical position is

the position of Unstable equilibrium. We intend to use accelerometer and gyroscope to interface
and measure the angle made by the bot with the vertical. Gyroscope to be used as it gives a
precise reading while accelerometer gives an acurate but less precise reading. So a
complementary filter has to be used to get the actual value of “theta” at all times.

Complementary Filter :
angle = 0,98 % (angle + gyr Data = dt) + 0.02 % (ace Data)

2. Bitwise Operators
The discussed Bitwise Operators were “A",”|"&”"~" ">>" "<<”
“N - Bitwise XOR Operator .

Truth Table :
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

“|” - Bitwise OR Operator
Truth Table:

%

A =A81E

=t e 1
- (O o= T
— = = ()




“&” - Bitwise AND Operator
Truth Table:

A B out

— e D

— D e OO
— 0 O O

“~” - Bitwise NOT Operator
Truth Table:

Input

Output

0

‘<<’ “>>” - Left Shift/Right Shift Operators

Operators which can shift the whole binary thread left or right appending or proceeding it by

zeroes by the given parameters.

3. Basic Coding

Constants, Variables, Loops & Condition Statements were discussed.

4. AVR Coding

Basic Etiquettes of AVR coding were discussed. So were common common
practices. Then Registers “PORTX”, “DDRX”,"PINX” were discussed.

“‘DDRX” - Stores the pinMode of each pin in the port ‘X’, 1 for output and 0 for input.
“‘PORTX” - Write only Register, 1 if output is high else 0, can be set for pins in output mode only.



“PINX” - Read Only Register, 1 if input is high, 0 if low, can be read for pins in input mode only
in port “X”.

5. Setting, Clearing, Checking, Toggling a bit
Setting : a|=(1<<x)
Clearing: a&=~(1<<x)
Checking: a&=(1<<x)
Toggling: a*=(1<<x)
If X” is the position of the bit to be toggled.

Programs for basic I/O functions on ATmega16 (LED)
1. Switching LED On:

#define F_ CPU 16000000UL
#include <avr/io.h>

#include <util/delay.h>
#define setit ~0

int main(void)

{
DDRB=setit;
PORTB=setit;
while(1)
{
//ITODO:: Please write your Application code
}
}

2. Blinking LED’s

#define F_ CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#define setit ~0
int main(void)
{
DDRB-=setit;
PORTB=setit;
while(1)
{
//TODO:: Please write your Application code
_delay_ms(500);
PORTB=(~PORTB);



3. Pattern LED’s

#define F_ CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#define setit ~0
#define setitl 0
int main(void)
{
DDRB=setit;
PORTB=setitl;
for (int i=0; i<§; i++)

{
for (int j=i; j<<§; j++)
{
PORTBI=(1<<j);
_delay_ms(200);
PORTB"=(1<<j);
}
for (int k=7; k>=i; k--)
{
PORTBI=(1<<k);
_delay_ms(200);
PORTB"=(1<<k);
}
PORTBI=(1<<i);
_delay_ms(200);
}



DAY 2

Rectifier Circuit :

They convert A.C. voltage into regulated D.C voltage. A rectifier uses the polar property of a
diode i.e. a diode allows only unidirectional current to pass through it which happens when the
P- terminal is at higher voltage then the N- terminal of the diode. This configuration is known as
forward bias of the diode. The following shows a basic circuit for the rectifier circuit.

Vohage Regulator

| - Votsge R |
/ p- - -
>

,_

7
M
il e
— N MEBL
7

~

:

_‘.I.'I'“IJ'N'J\_.

- -

The diodes at the right top and left bottom are in forward bias in the positive half cycle and the
diodes at the left top and the bottom right are in forward bias in the negative half cycle of the
voltage. Hence current always flows in one direction in the circuit. The first capacitor is known
as filter which converts the varying signals (as shown below) to ripple voltage.

voltage

time

Full Wave Rectification
(Varying DC)



f“" Capacitor
Voltage

Rectified
Waveform
1 '_t

Fig 1 shows voltage after only rectifier and fig 2 shows voltage after filtering the voltage using a
capacitor. The filtering works on the property of capacitor to store charge when voltage across
terminals is increasing and give it away when the reverse happens i.e. the voltage across its
terminals decreases.

This is followed by a 78xx I.C. which is voltage regulator, where xx denotes its output voltage. It
removes the ripples from the voltage and the voltage looks like:

Hence we arrive at a regulated voltage as we wished to. The capacitor after this I.C. is used to
take away whatever little ripples are left.



Motor Driver IC’s (L293D) :

The motor Driver Circuit L293D is a quad comparator IC which is used to drive motors forward
and backward as required. Internally it contains 4 H bridges which are used to drive motors.
Block Diargram is shown Below :

Moter Driver ICL293D Connections Veeo
Sl
16
PBO 4 2 15 P pB2
3 14

—1* L2930 [

11
PB1 7
< 10 » PB3

Vbat’[‘_ B 9 qVee

The job of the Comparator is to compare the input voltage with a reference voltage and give a
logical high if the Input voltage is greater than the reference voltage and a logical low otherwise.
The comparator H bridge is shown below.

Veet

-_—0
4
i

r
1
2

Vec2




The Two motors as shown in the above figure are connected to the output pins and the direction
of the motor is decided by the voltage that is supplied to the pins 11, 12, I3, 14.

11, 12 - For motor 1

13, 14 - For motor 2.

This motor driver IC can be interfaced with out ATmega16 Development Board and a code can
be written as follows to run the motors as required.

Note : A PWM across the motors can be generated using Enable pins on this IC.

Code :

#define F_ CPU 16000000UL
#include <avr/io.h>

#include <util/delay.h>
#define setit ~0

#define setitl 0

void W()
{
PORTC=(1<<PC0)|(1<<PC4);
}
void A()
{
PORTC=(1<<PC0)|(1<<PC5);
§
void S()
{
PORTC=(1<<PC1)|(1<<PC5);
§
void D()
{
PORTC=(1<<PC1)|(1<<PC4);,
§
int main(void)
{
DDRC=setit;
DDRD-=setit;
PORTC=setitl;
PORTD=(1<<PD4)|(1<<PD5);
while(1)
{

WO;
_delay _ms(500);
AQ);



_delay_ms(500);

SO);

_delay_ms(500);

DO;

_delay_ms(500);

//TODO:: Please write your application code

ADC (Analog To Digital Conversion) :

The ATmega16 has the capability to take analog input from some of its pins and some of the
pins have been reserved for this purpose. These pins are PAQO, PA1, PA2, PA3, PA4, PA5, PAG,
PA 7.

These pins can take analog inputs and convert it into a 10 bit digital output i.e. a potential
difference of 0 - 5 V can be converted into a data packet which has readings from 0 to 1023.

Specific Registers are set in the ATmega16 chip which carry out this conversion and store the
result . These registers are explained below.

ADMUX — ADC Multiplexer Selection Register
The ADMUX register is as follows.

Bit 7 6 5 4 3 2 1 0

I REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 I ADMUX
Read/Write RW RIW RIW RW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

ADMUX Register

The bits that are highlighted are of interest to us. In any case, we will discuss all the bits one by
one.

e Bits 7:6 — REFS1:0 — Reference Selection Bits — These bits are used to choose the

reference voltage. The following combinations are used.



REFS1 | REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

Reference Voltage Selection

40
39
38
a7
36
35
34
33
32
31
30

HEENEEEREEREpERE

ADC Voltage Reference Pins

The ADC needs a reference voltage to work upon. For this we have a three pins AREF, AVCC
and GND. We can supply our own reference voltage across AREF and GND. For this, choose
the first option. Apart from this case, you can either connect a capacitor across AREF pin and
ground it to prevent from noise, or you may choose to leave it unconnected. If you want to use
the VCC (+5V), choose the second option. Or else, choose the last option for internal Vref.
Let’s choose the second option for Vcc = 5V.

e Bit 5 - ADLAR - ADC Left Adjust Result — Make it ‘1" to Left Adjust the ADC Result.

We will discuss about this a bit later.
e Bits 4:0 — MUX4:0 — Analog Channel and Gain Selection Bits — There are 8 ADC

channels (PAO...PA7). You can choose one specific channel by setting these bits. Since



there are 5 bits, it consists of 225 = 32 different conditions. However, we are concerned

only with the first 8 conditions. Initially, all the bits are set to zero.

ADCSRA — ADC Control and Status Register A
The ADCSRA register is as follows.

Bit 7 6 5 4 3 2 1 0
| ADEN | ADSC [ ADATE ADIF ADIE ADPS2 | ADPS1 | ADPSO | ADCSRA

Read/Write R/W RIW RIW R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ADCSRA Register

The bits that are highlighted are of interest to us. In any case, we will discuss all the bits one by

one.

Bit 7 — ADEN — ADC Enable — As the name says, it enables the ADC feature. Unless
this is enabled, ADC operations cannot take place across PORTA i.e. PORTA will
behave as GPIO pins.

Bit 6 — ADSC - ADC Start Conversion — Write this to ‘1’ before starting any
conversion. This 1 is written as long as the conversion is in progress, after which it
returns to zero. Normally it takes 13 ADC clock pulses for this operation. But when you
call it for the first time, it takes 25 as it performs the initialization together with it.

Bit 5 — ADATE — ADC Auto Trigger Enable — Setting it to ‘1’ enables auto-triggering of
ADC. ADC is triggered automatically at every rising edge of clock pulse. View the SFIOR
register for more details.

Bit 4 — ADIF — ADC Interrupt Flag — Whenever a conversion is finished and the
registers are updated, this bit is set to ‘1’ automatically. Thus, this is used to check
whether the conversion is complete or not.

Bit 3 — ADIE — ADC Interrupt Enable — When this bit is set to ‘1’, the ADC interrupt is
enabled. This is used in the case of interrupt-driven ADC.

Bits 2:0 — ADPS2:0 — ADC Prescaler Select Bits — The prescaler (division factor
between XTAL frequency and the ADC clock frequency) is determined by selecting the

proper combination from the following.



ADPS2 ADPS1 ADPSO0 Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

ADC Prescaler Selections

Assuming XTAL frequency of 16MHz and the frequency range of 50kHz-200kHz, we choose a
prescaler of 128.
Thus, F_ADC = 16M/128 = 125kHz.

And the Last but very Important register THE ADC Register;
ADCL and ADCH — ADC Data Registers

The result of the ADC conversion is stored here. Since the ADC has a resolution of 10 bits, it
requires 10 bits to store the result. Hence one single 8 bit register is not sufficient. We need two
registers — ADCL and ADCH (ADC Low byte and ADC High byte) as follows. The two can be

called together as ADC.

Bit 15 14 13 12 11 10 9 8

s = = = = = ADC9 ADC8 ADCH

ADC7 ADC6 ADCS5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
i 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ADLAR =0

ADC Data Registers (ADLAR = 0)




Bit 15 14 13 12 i 10 9 8
ADC9 ADCS8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ADLAR = 1

ADC Data Registers (ADLAR = 1)

You can very well see the the effect of ADLAR bit (in ADMUX register). Upon setting ADLAR =

1, the conversion result is left adjusted.

Note : AS SOON AS THE ADCH REGISTER IS READ BY THE MICROCONTROLLER THE
VALUES OF ADCH AND ADCL ARE DUMPED. Hence while using ADLAR =1 mode we can

get an accuracy of 278 only.

A sample Code That Uses ADC is given Below.

#define F_ CPU 16000000UL
#include <util/delay.h>
#include <avr/io.h>
#define setit ~0
#define setitl 0
int main(void)
{
DDRB = setit;
DDRA = setitl;
PORTB = setitl;
ADCSRA = (1<<ADEN)|(1<<ADPS0)|(1<<ADPS1)|(1<<ADPS2);
ADMUX = (1<<REFS0);
while(1)
{
//TODO:: Please write your application code
ADCSRA [=(1<<ADSC);
inta= ADC,;
if (a>820)
{
PORTB=(1<<PBO0)|(1<<PB1)|(1<<PB2)|(1<<PB3)|(1<<PB4);

}
else if (a>615)



{

PORTB=(1<<PB0)|(1<<PB1)|(1<<PB2)|(1<<PB3);

}
else if (a>410)
{
PORTB=(1<<PB0)|(1<<PB1)|(1<<PB2);
}
else if (a>205)
{
PORTB=(1<<PB0)|(1<<PB0);
}
else
{
PORTB=(1<<PB0);
}

}

This code utilises the data given by the POTENTIOMETER AT PAO and lights up status LED’s.

Timer0/ 8 - Bit Timer with PWM.

e Timers are made up of registers, whose value automatically increases/decreases. Thus,

the terms timer/counter are used interchangeably.

e In AVR, there are three types of timers — TIMERO, TIMER1 and TIMER2. Of these,

TIMER1 is a 16-bit timer whereas others are 8-bit timers.

e Prescalers are used to trade duration with resolution.

e As we want less precision but higher values we choose our prescalers to bigh high in the

range of 256 to 1024.
TCNTO Register

The Timer/Counter Register — TCNTO is as follows:

Bit 7 6 5 4 3 2 1 0
| TCNTO[7:0] | TcnTo

Read/Write R/W R/W R/W R/W RIW R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

TCNTO Register



This is where the uint 8-bit counter of the timer resides. The value of the counter is stored here
and increases/decreases automatically. Data can be both read/written from this register.

TCCRO Register
The Timer/Counter Control Register — TCCRO is as follows:

Bit ¥ 6 5 4 3 2 1 0

I FOCO0 WGMO00 | COMO1 COMO0 | WGMO1 Cs02 CSo01 CcSs00 I TCCRO
Read/Write w R/wW RIW R/W R/W RiW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

TCCRO Register

Right now, we will concentrate on the highlighted bits. The other bits will be discussed as and
when necessary. By selecting these three Clock Select Bits, CS02:00, we set the timer up by

choosing proper prescaler. The possible combinations are shown below.

cso2 Cs01 CS00 | Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,;o/(No prescaling)

0 1 0 clkyo/8 (From prescaler)

0 1 1 clk;/64 (From prescaler)

1 0 0 clk, /256 (From prescaler)

1 0 1 clk;o/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

Clock Select Bit Description

Bit 6,3 — WGMO01:0 — Waveform Generation Mode — These bits can be set to either “00” or
“01” depending upon the type of PWM you want to generate. Here’s the look up table.
DAY 1

The first day of the workshop dealt with “ The Theory Of Everything”. 4 major topics were
discussed.
1. Physics
The principle of the Self Balancing Bot, i.e. Inverted Pendulum. The Vertical position is
the position of Unstable equilibrium. We intend to use accelerometer and gyroscope to interface
and measure the angle made by the bot with the vertical. Gyroscope to be used as it gives a




precise reading while accelerometer gives an acurate but less precise reading. So a
complementary filter has to be used to get the actual value of “theta” at all times.

Complementary Filter :

angle = 0,98 % (angle + gyr Data = dt) + 0.02 % (ace Data)

2. Bitwise Operators
The discussed Bitwise Operators were “N")”|""&”,"~"">>" "<<”

“N - Bitwise XOR Operator .

Truth Table :
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

“|” - Bitwise OR Operator
Truth Table:

%

A =A81E

- (O o= T

P I G|

“&” - Bitwise AND Operat
Truth Table:

or




out

b—'b—lCDCD:[;.
r—t@r—lﬂw

— O O

“~” - Bitwise NOT Operator
Truth Table:

Input

Output

0

“<<” “>>” - Left Shift/Right Shift Operators
Operators which can shift the whole binary thread left or right appending or proceeding it by
zeroes by the given parameters.

3. Basic Coding

Constants, Variables, Loops & Condition Statements were discussed.

4. AVR Coding

Basic Etiquettes of AVR coding were discussed. So were common common
practices. Then Registers “PORTX”, “DDRX”,"PINX” were discussed.

“‘DDRX” - Stores the pinMode of each pin in the port ‘X’, 1 for output and 0 for input.
“‘PORTX” - Write only Register, 1 if output is high else 0, can be set for pins in output mode only.
“PINX” - Read Only Register, 1 if input is high, 0 if low, can be read for pins in input mode only

in port “X”.




5. Setting, Clearing, Checking, Toggling a bit
Setting : a|=(1<<x)
Clearing: a&=~(1<<x)
Checking: a&=(1<<x)
Toggling: a*=(1<<x)
If X’ is the position of the bit to be toggled.

Programs for basic I/O functions on ATmega16 (LED)
1. Switching LED On:

#define F_ CPU 16000000UL
#include <avr/io.h>

#include <util/delay.h>
#define setit ~0

int main(void)

{
DDRB-=setit;
PORTB=setit;
while(1)
{
//TODO:: Please write your Application code
}
}

2. Blinking LED’s

#define F_CPU 16000000UL
#include <avr/io.h>

#include <util/delay.h>
#define setit ~0

int main(void)

{
DDRB=setit;
PORTB=setit;
while(1)
{
//TODO:: Please write your Application code
_delay _ms(500);
PORTB=(~PORTB);
}
}

3. Pattern LED’s

#define F_CPU 16000000UL



#include <avr/io.h>
#include <util/delay.h>
#define setit ~0
#define setitl 0
int main(void)
{
DDRB-=setit;
PORTB=setitl;
for (int i=0; i<§; i++)

{
for (int j=i; j<§; j++)
{
PORTB[=(1<<j);
_delay _ms(200);
PORTB"=(1<<j);
}
for (int k=7; k>=i; k--)
{
PORTB=(1<<k);
_delay _ms(200);
PORTB"=(1<<k);
}
PORTB=(1<<i);
_delay _ms(200);
}



DAY 2 &3

Rectifier Circuit :

They convert A.C. voltage into regulated D.C voltage. A rectifier uses the polar property of a
diode i.e. a diode allows only unidirectional current to pass through it which happens when the
P- terminal is at higher voltage then the N- terminal of the diode. This configuration is known as
forward bias of the diode. The following shows a basic circuit for the rectifier circuit.

Vohage Regulator

| - Votsge R |
/ p- - -
>

,_

7
M
il e
— N MEBL
7

~

:

_‘.I.'I'“IJ'N'J\_.

- -

The diodes at the right top and left bottom are in forward bias in the positive half cycle and the
diodes at the left top and the bottom right are in forward bias in the negative half cycle of the
voltage. Hence current always flows in one direction in the circuit. The first capacitor is known
as filter which converts the varying signals (as shown below) to ripple voltage.

voltage

time

Full Wave Rectification
(Varying DC)



f“" Capacitor
Voltage

Rectified
Waveform
1 '_t

Fig 1 shows voltage after only rectifier and fig 2 shows voltage after filtering the voltage using a
capacitor. The filtering works on the property of capacitor to store charge when voltage across
terminals is increasing and give it away when the reverse happens i.e. the voltage across its
terminals decreases.

This is followed by a 78xx I.C. which is voltage regulator, where xx denotes its output voltage. It
removes the ripples from the voltage and the voltage looks like:

Hence we arrive at a regulated voltage as we wished to. The capacitor after this I.C. is used to
take away whatever little ripples are left.



Motor Driver IC’s (L293D) :

The motor Driver Circuit L293D is a quad comparator IC which is used to drive motors forward
and backward as required. Internally it contains 4 H bridges which are used to drive motors.
Block Diargram is shown Below :

Moter Driver ICL293D Connections Veeo
Sl
16
PBO 4 2 15 P pB2
3 14

—1* L2930 [

11
PB1 7
< 10 » PB3

Vbat’[‘_ B 9 qVee

The job of the Comparator is to compare the input voltage with a reference voltage and give a
logical high if the Input voltage is greater than the reference voltage and a logical low otherwise.
The comparator H bridge is shown below.

Veet

-_—0
4
i

r
1
2

Vec2




The Two motors as shown in the above figure are connected to the output pins and the direction
of the motor is decided by the voltage that is supplied to the pins 11, 12, I3, 14.

11, 12 - For motor 1

13, 14 - For motor 2.

This motor driver IC can be interfaced with out ATmega16 Development Board and a code can
be written as follows to run the motors as required.

Note : A PWM across the motors can be generated using Enable pins on this IC.

Code :

#define F_ CPU 16000000UL
#include <avr/io.h>

#include <util/delay.h>
#define setit ~0

#define setitl 0

void W()
{
PORTC=(1<<PC0)|(1<<PC4);
}
void A()
{
PORTC=(1<<PC0)|(1<<PC5);
§
void S()
{
PORTC=(1<<PC1)|(1<<PC5);
§
void D()
{
PORTC=(1<<PC1)|(1<<PC4);,
§
int main(void)
{
DDRC=setit;
DDRD-=setit;
PORTC=setitl;
PORTD=(1<<PD4)|(1<<PD5);
while(1)
{

WO;
_delay _ms(500);
AQ);



_delay_ms(500);

SO);

_delay_ms(500);

DO;

_delay_ms(500);

//TODO:: Please write your application code

ADC (Analog To Digital Conversion) :

The ATmega16 has the capability to take analog input from some of its pins and some of the
pins have been reserved for this purpose. These pins are PAQO, PA1, PA2, PA3, PA4, PA5, PAG,
PA 7.

These pins can take analog inputs and convert it into a 10 bit digital output i.e. a potential
difference of 0 - 5 V can be converted into a data packet which has readings from 0 to 1023.

Specific Registers are set in the ATmega16 chip which carry out this conversion and store the
result . These registers are explained below.

ADMUX — ADC Multiplexer Selection Register
The ADMUX register is as follows.

Bit 7 6 5 4 3 2 1 0

I REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 I ADMUX
Read/Write RW RIW RIW RW R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

ADMUX Register

The bits that are highlighted are of interest to us. In any case, we will discuss all the bits one by
one.

e Bits 7:6 — REFS1:0 — Reference Selection Bits — These bits are used to choose the

reference voltage. The following combinations are used.



REFS1 | REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

Reference Voltage Selection

40
39
38
a7
36
35
34
33
32
31
30

HEENEEEREEREpERE

ADC Voltage Reference Pins

The ADC needs a reference voltage to work upon. For this we have a three pins AREF, AVCC
and GND. We can supply our own reference voltage across AREF and GND. For this, choose
the first option. Apart from this case, you can either connect a capacitor across AREF pin and
ground it to prevent from noise, or you may choose to leave it unconnected. If you want to use
the VCC (+5V), choose the second option. Or else, choose the last option for internal Vref.
Let’s choose the second option for Vcc = 5V.

e Bit 5 - ADLAR - ADC Left Adjust Result — Make it ‘1" to Left Adjust the ADC Result.

We will discuss about this a bit later.
e Bits 4:0 — MUX4:0 — Analog Channel and Gain Selection Bits — There are 8 ADC

channels (PAO...PA7). You can choose one specific channel by setting these bits. Since



there are 5 bits, it consists of 225 = 32 different conditions. However, we are concerned

only with the first 8 conditions. Initially, all the bits are set to zero.

ADCSRA — ADC Control and Status Register A
The ADCSRA register is as follows.

Bit 7 6 5 4 3 2 1 0
| ADEN | ADSC [ ADATE ADIF ADIE ADPS2 | ADPS1 | ADPSO | ADCSRA

Read/Write R/W RIW RIW R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ADCSRA Register

The bits that are highlighted are of interest to us. In any case, we will discuss all the bits one by

one.

Bit 7 — ADEN — ADC Enable — As the name says, it enables the ADC feature. Unless
this is enabled, ADC operations cannot take place across PORTA i.e. PORTA will
behave as GPIO pins.

Bit 6 — ADSC - ADC Start Conversion — Write this to ‘1’ before starting any
conversion. This 1 is written as long as the conversion is in progress, after which it
returns to zero. Normally it takes 13 ADC clock pulses for this operation. But when you
call it for the first time, it takes 25 as it performs the initialization together with it.

Bit 5 — ADATE — ADC Auto Trigger Enable — Setting it to ‘1’ enables auto-triggering of
ADC. ADC is triggered automatically at every rising edge of clock pulse. View the SFIOR
register for more details.

Bit 4 — ADIF — ADC Interrupt Flag — Whenever a conversion is finished and the
registers are updated, this bit is set to ‘1’ automatically. Thus, this is used to check
whether the conversion is complete or not.

Bit 3 — ADIE — ADC Interrupt Enable — When this bit is set to ‘1’, the ADC interrupt is
enabled. This is used in the case of interrupt-driven ADC.

Bits 2:0 — ADPS2:0 — ADC Prescaler Select Bits — The prescaler (division factor
between XTAL frequency and the ADC clock frequency) is determined by selecting the

proper combination from the following.



ADPS2 ADPS1 ADPSO0 Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

ADC Prescaler Selections

Assuming XTAL frequency of 16MHz and the frequency range of 50kHz-200kHz, we choose a
prescaler of 128.
Thus, F_ADC = 16M/128 = 125kHz.

And the Last but very Important register THE ADC Register;
ADCL and ADCH — ADC Data Registers

The result of the ADC conversion is stored here. Since the ADC has a resolution of 10 bits, it
requires 10 bits to store the result. Hence one single 8 bit register is not sufficient. We need two
registers — ADCL and ADCH (ADC Low byte and ADC High byte) as follows. The two can be

called together as ADC.

Bit 15 14 13 12 11 10 9 8

s = = = = = ADC9 ADC8 ADCH

ADC7 ADC6 ADCS5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
i 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ADLAR =0

ADC Data Registers (ADLAR = 0)




Bit 15 14 13 12 i 10 9 8
ADC9 ADCS8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ADLAR = 1

ADC Data Registers (ADLAR = 1)

You can very well see the the effect of ADLAR bit (in ADMUX register). Upon setting ADLAR =

1, the conversion result is left adjusted.

Note : AS SOON AS THE ADCH REGISTER IS READ BY THE MICROCONTROLLER THE
VALUES OF ADCH AND ADCL ARE DUMPED. Hence while using ADLAR =1 mode we can

get an accuracy of 278 only.

A sample Code That Uses ADC is given Below.

#define F_ CPU 16000000UL
#include <util/delay.h>
#include <avr/io.h>
#define setit ~0
#define setitl 0
int main(void)
{
DDRB = setit;
DDRA = setitl;
PORTB = setitl;
ADCSRA = (1<<ADEN)|(1<<ADPS0)|(1<<ADPS1)|(1<<ADPS2);
ADMUX = (1<<REFS0);
while(1)
{
//TODO:: Please write your application code
ADCSRA [=(1<<ADSC);
inta= ADC,;
if (a>820)
{
PORTB=(1<<PBO0)|(1<<PB1)|(1<<PB2)|(1<<PB3)|(1<<PB4);

}
else if (a>615)



{

PORTB=(1<<PB0)|(1<<PB1)|(1<<PB2)|(1<<PB3);

}
else if (a>410)
{
PORTB=(1<<PB0)|(1<<PB1)|(1<<PB2);
}
else if (a>205)
{
PORTB=(1<<PB0)|(1<<PB0);
}
else
{
PORTB=(1<<PB0);
}

}

This code utilises the data given by the POTENTIOMETER AT PAO and lights up status LED’s.

Timer0/ 8 - Bit Timer with PWM.

e Timers are made up of registers, whose value automatically increases/decreases. Thus,

the terms timer/counter are used interchangeably.

e In AVR, there are three types of timers — TIMERO, TIMER1 and TIMER2. Of these,

TIMER1 is a 16-bit timer whereas others are 8-bit timers.

e Prescalers are used to trade duration with resolution.

e As we want less precision but higher values we choose our prescalers to bigh high in the

range of 256 to 1024.
TCNTO Register

The Timer/Counter Register — TCNTO is as follows:

Bit 7 6 5 4 3 2 1 0
| TCNTO[7:0] | TcnTo

Read/Write R/W R/W R/W R/W RIW R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

TCNTO Register



This is where the uint 8-bit counter of the timer resides. The value of the counter is stored here

and increases/decreases automatically. Data can be both read/written from this register.

TCCRO Register
The Timer/Counter Control Register — TCCRO is as follows:

Bit

Read/Write

Initial Value

¥ 6 5 4 3 2 1 0

I FOCO WGMO00 | COMO1 COMO00 | WGMO1 Cso02 CSo01 CcSs00 I TCCRO
w R/W RIW R/W R/W RiW R/W R/W
0 0 0 0 0 0 0 0

TCCRO Register

Right now, we will concentrate on the highlighted bits. The other bits will be discussed as and

when necessary. By selecting these three Clock Select Bits, CS02:00, we set the timer up by

choosing proper prescaler. The possible combinations are shown below.

Ccs02 Cso01 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,;o/(No prescaling)
0 1 0 clkyo/8 (From prescaler)
0 1 1 clk;/64 (From prescaler)
1 0 0 clk,;o/256 (From prescaler)
1 0 1 clk;o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

Clock Select Bit Description

Bit 6,3 — WGMO01:0 — Waveform Generation Mode — These bits can be set to either “00” or “01”
depending upon the type of PWM you want to generate. Here’s the look up table.

Bit 5,4 — COMO01:0 — Compare Match Output Mode — These bits are set in order to control the
behavior of Output Compare pin in accordance with the WGMO01:0 bits.




TIMSK Register
The Timer/Counter Interrupt Mask — TIMSK Register is as follows. It is a common register for

all the three timers. For TIMERO, bits 1 and 0 are allotted. Right now, we are interested in the
Oth bit TOIEQ. Setting this bit to ‘1’ enables the TIMERO overflow interrupt.

TIMSK Register

TIFR Register
The Timer/Counter Interrupt Flag Register- TIFR is as follows. Even though we are not using

it in our code, you should be aware of it.

TIFR Register

This is also a register shared by all the timers. Even here, bits 1 and 0 are allotted for TIMERO.
At present we are interested in the Oth bit TOVO bit. This bit is set (one) whenever TIMERO
overflows. This bit is reset (zero) whenever the Interrupt Service Routine (ISR) is executed. If

there is no ISR to execute, we can clear it manually by writing one to it

Here Are some sample codes using timers and PWM

1. LED BLINKING WITHOUT DELAY

#include <avr/io.h>
#define setit ~0
#define setit1 0
int main(void)
{
DDRB = setit;
PORTB= setit1;



long ctr=0;
TCCRO = (1<<CS02)|(1<<CS00);

TCNTO0=0;
while(1)
{
if (TCNT0==255)
{
ctr++;
TCNTO=0;
}
if (TCNTO + ctr*255)==4650)
{
PORTB”=~0;
ctr=0;
}
else
{
}

/ITODO:: Please write your application code

2. PWM + ADC duty cycles managed by voltage supplied at PAO;

#define F_CPU 16000000UL
#include <util/delay.h>
#include <avr/io.h>
#define setit ~0
#define setitl 0
int main(void)
{
DDRB = setit;
DDRA = setitl;
PORTB = setitl;
ADCSRA = (1<<ADEN)|(1<<ADPS0)|(1<<ADPS1)|(1<<ADPS2);
ADMUX = (1<<REFS0);
while(1)
{
//TODO:: Please write your application code
ADCSRA [=(1<<ADSC);
//check adsc
int a= ADC;
if (a>820)
{
TCCRO |= (1<<WGMO00)|(1<<COMO1)|(1<<WGMO1)|(1<<CS00)|(1<<CS02);
OCRO =0;



}

else if (a>615)

{
TCCRO |= (1<<WGMO00)|(1<<COMOD)|(1<<WGMO1)|(1<<CS00)|(1<<CS02);
OCRO = 26;

j

else if (a>410)

{
TCCRO |= (1<<WGMO00)|(1<<COMOD)|(1<<WGMO01)|(1<<CS00)|(1<<CS02);
OCRO = 102;

}

else if (a>205)

{
TCCRO |= (1<<WGMO00)|(1<<COMOD)|(1<<WGMO1)|(1<<CS00)|(1<<CS02);
OCRO = 153;

H

else

{
TCCRO |= (1<<WGMO00)|(1<<COMOD)|(1<<WGMO1)|(1<<CS00)|(1<<CS02);
OCRO = 204;

}

3. FADING LED USING PWM
#include<avr/io.h>
/f#include<avr/interrupt.h>
#define F_CPU 16000000UL
#include<util/delay.h>
#define setit ~0
#define setitl 0
float Dutycycle = 0;

int main()
{
//sei();
DDRB = setit;

TCCRO = (1<<WGMO00)|(1<<WGMO1)|(1<<COMO01)|(1<<CS00)|(1<<CS02)|(1<<COMO00);
//TIMSK = (1<<TOIEO0);
OCRO = (Dutycycle/100)*255;
TCNTO = 0;
while (1)
{
for (int i=0; i<10; i++)
{
Dutycycle+=10;
OCRO = (Dutycycle/100)*255;



_delay _ms(100);

j
for(int j=0; j<10; j++)
{
Dutycycle-=10;
OCRO = (Dutycycle/100)*255;
_delay_ms(100);
H
_delay _ms(300);
j
H
Interrupts :

Interrupts are basically events that require immediate attention by the microcontroller. When an
interrupt event occurs the microcontroller pause its current task and attend to the interrupt by
executing an Interrupt Service Routine (ISR) at the end of the ISR the microcontroller returns
to the task it had pause and continue its normal operations.

In order for the microcontroller to respond to an interrupt event the interrupt feature of the

microcontroller must be enabled along with the specific interrupt. This is done by setting the

Global Interrupt Enabled bit and thelnterrupt Enable bit of the specific interrupt.

Interrupt Service Routine or Interrupt Handler

An Interrupt Service Routine (ISR) or Interrupt Handler is a piece of code that should be
execute when an interrupt is triggered. Usually each enabled interrupt has its own ISR. In AVR
assembly language each ISR MUSTend with the RETI instruction which indicates the end of the
ISR.

Interrupt Flags and Enabled bits

Each interrupt is associated with two (2) bits, an Interrupt Flag Bit and an Interrupt Enabled

Bit. These bits are located in the I/O registers associated with the specific interrupt:

e The interrupt flag bit is set whenever the interrupt event occur, whether or not the
interrupt is enabled.
e The interrupt enabled bit is used to enable or disable a specific interrupt. Basically is

tells the microcontroller whether or not it should respond to the interrupt if it is triggered.



In summary basically both the Interrupt Flag and the Interrupt Enabled are required for an

interrupt request to be generated as shown in the figure below.

Interrupt Flag

Interrupt Request

Interrupt Enabled

Global Interrupt Enabled Bit

Apart from the enabled bits for the specific interrupts the global interrupt enabled bit MUST be

enabled for interrupts to be activated in the microcontoller.

For the AVR 8-bits microcontroller this bit is located in the Status I/O Register (SREG). The
Global Interrupt Enabled is bit 7, the I bit, in the SREG.

1 [T s |v]n]z |C

Interrupt sources provided with the AVR microcontroller

The AVR 8-bits microcontroller provide both internal and external interrupt sources. The internal
interrupts are associated with the microcontroller's peripherals. That is the Timer/Counter,
Analog Comparator, etc. The external interrupts are triggered via external pins. The figure
below shows the pins, on which the external interrupts can be triggered, for an AVR 8-bit
microcontroller. On this microcontroller there are four (4) external interrupts:

1. The RESET interrupt - Triggered from pin 9.

2. External Interrupt 0 (INTO) - Triggered from pin 16.
3. External Interrupt 1 (INT1) - Triggered from pin 17.
4. External Interrupt 2 (INT2) - Triggered from pin 3.



(XCK/TO) PBO

T1) PB1 O
[INTZ/AIND) PEZ

(OCO/AINT) PB3 O

(55) PB4 O

(MOSI) PBS O

(MISO) PB6 CJ
SCK) PBY
RESET

VEC. [

GND [

XTAL2 O

XTAL1 O

(RXD) PDO

TXD) PDA
INT1) PD3 (]
(OC1B) PD4 O
(OC1A) PD5 O
(ICP1) PD6 O

18
19
20

40
39
38
a7
36
35
34
33
32
31
30
29
28
27
26
295
24
23
22
21

Y 69 1 T 0 O 1 O 0 O 30 1

PAD (ADCO)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PAS (ADCS)
PAG (ADCE)
PAT (ADCT)
AREF

GND

AVCC

PC7 (TOSC2)
PC6 (TOSC1)
PCS (TODI)
PC4 (TDO)
PC3 (TMS)
PG2 (TCK)
PC1 (SDA)
PCO (SCL)
PD7 (OC2)

Very Important

When writing assembly codes for your AVR microcontroller utilizing the interrupt feature the

following MUST be observed:

e The interrupt MUST be enabled by setting its enabled bit in the appropriate I/O register.
e The Global Interrupt bit, the I bit, in the microcontroller's status register (SREG) MUST

also be enabled.

e The stack MUST be initialized. When an interrupt is being service the microcontroller
need to store critical information on the stack and so it must be initialized.
e The Interrupt Service Routine (ISR) MUST end with the RETI instruction, which indicates

the end of the ISR. The microcontroller needs to know when it reaches the end of the

ISR so it can return to its previous task.

Steps taken in servicing an interrupt

Upon the triggering of an interrupt the following sequence is followed by the microcontroller
providing that the both the specific interrupt and global interrupts are enabled in the

microcontroller:




1. The microcontroller completes the execution of the current instruction, clears the | bit
and stores the address of the next instruction that should have been executed (the
content of the PC) on the stack.

2. The interrupt vector of the triggered interrupt is then loaded in the PC and the
microcontroller starts execution from that point up until is reaches a RETI instruction.

3. Upon the the execution of the RETI instruction the address that was stored on the stack
in step 1 is reloaded in the PC and the | bit is re-enabled.

4. The microcontroller then start executing instructions from that point. That is the point that
it left off when the interrupt was triggered.

THE INTERRUPT VECTOR TABLE FOR ATmega16 is as follows

V":‘:f” Address Source Interrupt Definition
1 | 00 Resel | Watchdog Reset, and JTAG AVR Reset
2 $002 INTO External Interrupt Request 0
3 %004 INT1 External Interrupt Request 1
4 5006 TIMERZ COMP | Timer/Counter2 Compare Match
5 3008 TIMERZ OVF Timer/Counter2 Overflow
6 $00A TIMER1 CAPT Timer/Counter1 Capture Event
T $o0C TIMER1 COMPA. | Timer/Counter1 Compare Match A
8 $00E TIMER1 COMPE | Timer/Counter1 Compare Match B
9 %010 TIMER1 OVF TIMER1 OVF Timer/Counter1 Overflow
10 %012 TIMERO OVF Timer/Counter0 Overflow
1 5014 SPI, STC Serial Transfer Complete
12 $016 USART, RXC | Rx Complete
13 $018 USART, UDRE USART Data Register Empty
14 301A USART, TXC USART, Tx Complete
15 $01C ADC ADC Conversion Complete
16 $01E EE_RDY EEPROM Ready
17 $020 ANA_COMP Analog Comparator
18 5022 TWI Two-wire Serial Interface
19 5024 INT2 External Interrupt Request 2
20 5026 TIMERO COMP | Timer/Counter0 Compare Match
21 $028 SPM_RDY Store Program Memory Ready




